Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust.

Identifieur interne : 000133 ( Main/Exploration ); précédent : 000132; suivant : 000134

Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust.

Auteurs : Dario Cantu [États-Unis] ; Manjula Govindarajulu ; Alex Kozik ; Meinan Wang ; Xianming Chen ; Kenji K. Kojima ; Jerzy Jurka ; Richard W. Michelmore ; Jorge Dubcovsky

Source :

RBID : pubmed:21909385

Descripteurs français

English descriptors

Abstract

BACKGROUND

The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST) is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS) has radically improved sequencing speed and efficiency with a great reduction in costs compared to traditional sequencing technologies. We used Illumina sequencing to rapidly access the genomic sequence of the highly virulent PST race 130 (PST-130).

METHODOLOGY/PRINCIPAL FINDINGS

We obtained nearly 80 million high quality paired-end reads (>50x coverage) that were assembled into 29,178 contigs (64.8 Mb), which provide an estimated coverage of at least 88% of the PST genes and are available through GenBank. Extensive micro-synteny with the Puccinia graminis f. sp. tritici (PGTG) genome and high sequence similarity with annotated PGTG genes support the quality of the PST-130 contigs. We characterized the transposable elements present in the PST-130 contigs and using an ab initio gene prediction program we identified and tentatively annotated 22,815 putative coding sequences. We provide examples on the use of comparative approaches to improve gene annotation for both PST and PGTG and to identify candidate effectors. Finally, the assembled contigs provided an inventory of PST repetitive elements, which were annotated and deposited in Repbase.

CONCLUSIONS/SIGNIFICANCE

The assembly of the PST-130 genome and the predicted proteins provide useful resources to rapidly identify and clone PST genes and their regulatory regions. Although the automatic gene prediction has limitations, we show that a comparative genomics approach using multiple rust species can greatly improve the quality of gene annotation in these species. The PST-130 sequence will also be useful for comparative studies within PST as more races are sequenced. This study illustrates the power of NGS for rapid and efficient access to genomic sequence in non-model organisms.


DOI: 10.1371/journal.pone.0024230
PubMed: 21909385
PubMed Central: PMC3164196


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust.</title>
<author>
<name sortKey="Cantu, Dario" sort="Cantu, Dario" uniqKey="Cantu D" first="Dario" last="Cantu">Dario Cantu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, University of California Davis, Davis, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California Davis, Davis, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Govindarajulu, Manjula" sort="Govindarajulu, Manjula" uniqKey="Govindarajulu M" first="Manjula" last="Govindarajulu">Manjula Govindarajulu</name>
</author>
<author>
<name sortKey="Kozik, Alex" sort="Kozik, Alex" uniqKey="Kozik A" first="Alex" last="Kozik">Alex Kozik</name>
</author>
<author>
<name sortKey="Wang, Meinan" sort="Wang, Meinan" uniqKey="Wang M" first="Meinan" last="Wang">Meinan Wang</name>
</author>
<author>
<name sortKey="Chen, Xianming" sort="Chen, Xianming" uniqKey="Chen X" first="Xianming" last="Chen">Xianming Chen</name>
</author>
<author>
<name sortKey="Kojima, Kenji K" sort="Kojima, Kenji K" uniqKey="Kojima K" first="Kenji K" last="Kojima">Kenji K. Kojima</name>
</author>
<author>
<name sortKey="Jurka, Jerzy" sort="Jurka, Jerzy" uniqKey="Jurka J" first="Jerzy" last="Jurka">Jerzy Jurka</name>
</author>
<author>
<name sortKey="Michelmore, Richard W" sort="Michelmore, Richard W" uniqKey="Michelmore R" first="Richard W" last="Michelmore">Richard W. Michelmore</name>
</author>
<author>
<name sortKey="Dubcovsky, Jorge" sort="Dubcovsky, Jorge" uniqKey="Dubcovsky J" first="Jorge" last="Dubcovsky">Jorge Dubcovsky</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21909385</idno>
<idno type="pmid">21909385</idno>
<idno type="doi">10.1371/journal.pone.0024230</idno>
<idno type="pmc">PMC3164196</idno>
<idno type="wicri:Area/Main/Corpus">000128</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000128</idno>
<idno type="wicri:Area/Main/Curation">000128</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000128</idno>
<idno type="wicri:Area/Main/Exploration">000128</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust.</title>
<author>
<name sortKey="Cantu, Dario" sort="Cantu, Dario" uniqKey="Cantu D" first="Dario" last="Cantu">Dario Cantu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, University of California Davis, Davis, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of California Davis, Davis, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Govindarajulu, Manjula" sort="Govindarajulu, Manjula" uniqKey="Govindarajulu M" first="Manjula" last="Govindarajulu">Manjula Govindarajulu</name>
</author>
<author>
<name sortKey="Kozik, Alex" sort="Kozik, Alex" uniqKey="Kozik A" first="Alex" last="Kozik">Alex Kozik</name>
</author>
<author>
<name sortKey="Wang, Meinan" sort="Wang, Meinan" uniqKey="Wang M" first="Meinan" last="Wang">Meinan Wang</name>
</author>
<author>
<name sortKey="Chen, Xianming" sort="Chen, Xianming" uniqKey="Chen X" first="Xianming" last="Chen">Xianming Chen</name>
</author>
<author>
<name sortKey="Kojima, Kenji K" sort="Kojima, Kenji K" uniqKey="Kojima K" first="Kenji K" last="Kojima">Kenji K. Kojima</name>
</author>
<author>
<name sortKey="Jurka, Jerzy" sort="Jurka, Jerzy" uniqKey="Jurka J" first="Jerzy" last="Jurka">Jerzy Jurka</name>
</author>
<author>
<name sortKey="Michelmore, Richard W" sort="Michelmore, Richard W" uniqKey="Michelmore R" first="Richard W" last="Michelmore">Richard W. Michelmore</name>
</author>
<author>
<name sortKey="Dubcovsky, Jorge" sort="Dubcovsky, Jorge" uniqKey="Dubcovsky J" first="Jorge" last="Dubcovsky">Jorge Dubcovsky</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (genetics)</term>
<term>Contig Mapping (MeSH)</term>
<term>DNA Transposable Elements (genetics)</term>
<term>DNA, Fungal (genetics)</term>
<term>Ergosterol (biosynthesis)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Genes, Fungal (genetics)</term>
<term>Genome, Fungal (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Repetitive Sequences, Nucleic Acid (genetics)</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Synteny (genetics)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN fongique (génétique)</term>
<term>Analyse de séquence d'ADN (méthodes)</term>
<term>Basidiomycota (génétique)</term>
<term>Cartographie de contigs (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Ergostérol (biosynthèse)</term>
<term>Gènes fongiques (génétique)</term>
<term>Génome fongique (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Synténie (génétique)</term>
<term>Séquences répétées d'acides nucléiques (génétique)</term>
<term>Triticum (microbiologie)</term>
<term>Éléments transposables d'ADN (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Ergosterol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Transposable Elements</term>
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Ergostérol</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Genes, Fungal</term>
<term>Genome, Fungal</term>
<term>Repetitive Sequences, Nucleic Acid</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN fongique</term>
<term>Basidiomycota</term>
<term>Gènes fongiques</term>
<term>Génome fongique</term>
<term>Synténie</term>
<term>Séquences répétées d'acides nucléiques</term>
<term>Éléments transposables d'ADN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Contig Mapping</term>
<term>Molecular Sequence Data</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartographie de contigs</term>
<term>Données de séquences moléculaires</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST) is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS) has radically improved sequencing speed and efficiency with a great reduction in costs compared to traditional sequencing technologies. We used Illumina sequencing to rapidly access the genomic sequence of the highly virulent PST race 130 (PST-130).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY/PRINCIPAL FINDINGS</b>
</p>
<p>We obtained nearly 80 million high quality paired-end reads (>50x coverage) that were assembled into 29,178 contigs (64.8 Mb), which provide an estimated coverage of at least 88% of the PST genes and are available through GenBank. Extensive micro-synteny with the Puccinia graminis f. sp. tritici (PGTG) genome and high sequence similarity with annotated PGTG genes support the quality of the PST-130 contigs. We characterized the transposable elements present in the PST-130 contigs and using an ab initio gene prediction program we identified and tentatively annotated 22,815 putative coding sequences. We provide examples on the use of comparative approaches to improve gene annotation for both PST and PGTG and to identify candidate effectors. Finally, the assembled contigs provided an inventory of PST repetitive elements, which were annotated and deposited in Repbase.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS/SIGNIFICANCE</b>
</p>
<p>The assembly of the PST-130 genome and the predicted proteins provide useful resources to rapidly identify and clone PST genes and their regulatory regions. Although the automatic gene prediction has limitations, we show that a comparative genomics approach using multiple rust species can greatly improve the quality of gene annotation in these species. The PST-130 sequence will also be useful for comparative studies within PST as more races are sequenced. This study illustrates the power of NGS for rapid and efficient access to genomic sequence in non-model organisms.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21909385</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>01</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust.</ArticleTitle>
<Pagination>
<MedlinePgn>e24230</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0024230</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST) is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS) has radically improved sequencing speed and efficiency with a great reduction in costs compared to traditional sequencing technologies. We used Illumina sequencing to rapidly access the genomic sequence of the highly virulent PST race 130 (PST-130).</AbstractText>
<AbstractText Label="METHODOLOGY/PRINCIPAL FINDINGS" NlmCategory="RESULTS">We obtained nearly 80 million high quality paired-end reads (>50x coverage) that were assembled into 29,178 contigs (64.8 Mb), which provide an estimated coverage of at least 88% of the PST genes and are available through GenBank. Extensive micro-synteny with the Puccinia graminis f. sp. tritici (PGTG) genome and high sequence similarity with annotated PGTG genes support the quality of the PST-130 contigs. We characterized the transposable elements present in the PST-130 contigs and using an ab initio gene prediction program we identified and tentatively annotated 22,815 putative coding sequences. We provide examples on the use of comparative approaches to improve gene annotation for both PST and PGTG and to identify candidate effectors. Finally, the assembled contigs provided an inventory of PST repetitive elements, which were annotated and deposited in Repbase.</AbstractText>
<AbstractText Label="CONCLUSIONS/SIGNIFICANCE" NlmCategory="CONCLUSIONS">The assembly of the PST-130 genome and the predicted proteins provide useful resources to rapidly identify and clone PST genes and their regulatory regions. Although the automatic gene prediction has limitations, we show that a comparative genomics approach using multiple rust species can greatly improve the quality of gene annotation in these species. The PST-130 sequence will also be useful for comparative studies within PST as more races are sequenced. This study illustrates the power of NGS for rapid and efficient access to genomic sequence in non-model organisms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cantu</LastName>
<ForeName>Dario</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of California Davis, Davis, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Govindarajulu</LastName>
<ForeName>Manjula</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kozik</LastName>
<ForeName>Alex</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Meinan</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Xianming</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kojima</LastName>
<ForeName>Kenji K</ForeName>
<Initials>KK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jurka</LastName>
<ForeName>Jerzy</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Michelmore</LastName>
<ForeName>Richard W</ForeName>
<Initials>RW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dubcovsky</LastName>
<ForeName>Jorge</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>HQ698552</AccessionNumber>
<AccessionNumber>HQ698553</AccessionNumber>
<AccessionNumber>HQ698554</AccessionNumber>
<AccessionNumber>HQ698555</AccessionNumber>
<AccessionNumber>HQ698556</AccessionNumber>
<AccessionNumber>HQ698557</AccessionNumber>
<AccessionNumber>HQ698558</AccessionNumber>
<AccessionNumber>HQ698559</AccessionNumber>
<AccessionNumber>HQ698560</AccessionNumber>
<AccessionNumber>HQ698561</AccessionNumber>
<AccessionNumber>JN033203</AccessionNumber>
<AccessionNumber>JN033204</AccessionNumber>
<AccessionNumber>JN033205</AccessionNumber>
<AccessionNumber>JN033206</AccessionNumber>
<AccessionNumber>JN033207</AccessionNumber>
<AccessionNumber>JN033208</AccessionNumber>
<AccessionNumber>JN033209</AccessionNumber>
<AccessionNumber>JN033210</AccessionNumber>
<AccessionNumber>JN033211</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>08</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004251">DNA Transposable Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Z30RAY509F</RegistryNumber>
<NameOfSubstance UI="D004875">Ergosterol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020451" MajorTopicYN="N">Contig Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004251" MajorTopicYN="N">DNA Transposable Elements</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004875" MajorTopicYN="N">Ergosterol</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012091" MajorTopicYN="N">Repetitive Sequences, Nucleic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>08</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>1</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21909385</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0024230</ArticleId>
<ArticleId IdType="pii">PONE-D-11-05484</ArticleId>
<ArticleId IdType="pmc">PMC3164196</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17064419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18447959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Jan;99(1):89-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19055439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2010 May;59(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20487537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jul 23;329(5990):369</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20651122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 23;142(2):284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 May;24(5):554-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21190437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 10;108(19):7884-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21518873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21981858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Mar;125(3):1342-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11244114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Apr 15;22(8):1835-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Jul;13(7):1675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1976 Sep;9(1):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">788919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 1999 Jan 22;266(1415):163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10097391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(2):511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2005;110(1-4):462-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16093699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Nov;18(11):1130-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16353548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 1;23(9):1061-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332020</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Xianming" sort="Chen, Xianming" uniqKey="Chen X" first="Xianming" last="Chen">Xianming Chen</name>
<name sortKey="Dubcovsky, Jorge" sort="Dubcovsky, Jorge" uniqKey="Dubcovsky J" first="Jorge" last="Dubcovsky">Jorge Dubcovsky</name>
<name sortKey="Govindarajulu, Manjula" sort="Govindarajulu, Manjula" uniqKey="Govindarajulu M" first="Manjula" last="Govindarajulu">Manjula Govindarajulu</name>
<name sortKey="Jurka, Jerzy" sort="Jurka, Jerzy" uniqKey="Jurka J" first="Jerzy" last="Jurka">Jerzy Jurka</name>
<name sortKey="Kojima, Kenji K" sort="Kojima, Kenji K" uniqKey="Kojima K" first="Kenji K" last="Kojima">Kenji K. Kojima</name>
<name sortKey="Kozik, Alex" sort="Kozik, Alex" uniqKey="Kozik A" first="Alex" last="Kozik">Alex Kozik</name>
<name sortKey="Michelmore, Richard W" sort="Michelmore, Richard W" uniqKey="Michelmore R" first="Richard W" last="Michelmore">Richard W. Michelmore</name>
<name sortKey="Wang, Meinan" sort="Wang, Meinan" uniqKey="Wang M" first="Meinan" last="Wang">Meinan Wang</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Cantu, Dario" sort="Cantu, Dario" uniqKey="Cantu D" first="Dario" last="Cantu">Dario Cantu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000133 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000133 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21909385
   |texte=   Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21909385" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020